

COE for Airworthiness Assurance (AACE)

Subby Rajan (Arizona State Univ)

FAA Technical Managers

Don Altobelli

Bill Emmerling

Project Goal

The goal of this project is to combine the technical strengths of Honeywell Engines & Systems Phoenix, SRI International, NASA Glenn Research Center (GRC) and Arizona State University for developing a robust explicit finite element analysis modeling methodology of composite fiber fabric wraps that are widely used in the containment systems of gas turbine engines.

Project History

- Phase 1: Sept 2001 May 2003
- Phase 2: Oct 2003 May 2006

The Wrong Way

Honeywell AS907 Turbofan Engine

Phase 1 Tasks

- Development of a material model suitable for both implicit and explicit FE analyses
- Verification of the material model using static and dynamic load tests
- Incorporation of the material model in fullscale engine test models and comparison with full-scale test results

ASU and SRI Development of Material Model and Verification via Static Ring Tests

Fabrics Used

	Kevlar 49	Light Zylon AS	Heavy Zylon AS
Yarn Denier (g/9 km)	1500	500	1500
Yarn Count (yarns/in)	17 x 17	35 x 35	17 x 17
Areal Density (g/cm²)	0.00275	0.01575	0.0223

Simple Tension Test

- Specimen: 12" long, 2.5" wide
- End tabs: 2.5" long, 2.5" wide, 0.025" thick
- Actuator stroke rate:0.1"/min

Kevlar Stress-Strain Curves

Zylon Stress-Strain Curves

Static Test Setup

Blunt Nose Setup (2" x 5/16")

Kevlar Failure Mode (24 layers)

Zylon Failure Mode (24 layers)

FE Model

Kevlar: 1 & 2 Layer Tests

Zylon: 4 & 8 Layer Tests

Ballistic Fabric Material Model

NASA-GRC Ballistic Impact Testing

Test Setup

Test Setup

Projectile

- 4" long, 2" high, 3/16" thick
- 304 SS
- Full radius leading edge
- Mass: 315 320 g

Test LG407. 24 Layer 500 d Zylon
FAA Development of Reliable Modeling Methodologies
for Fan Viac-0904 in the Security Se

Test LG421. 8 Layer 1500 d Zylon
FAA Development of Reliable Modeling Methodologies
for Fan Viacco 859 Air ft/Se0 sis

Energy Absorbed

Fabric Normalized Energy Absorption

Conclusions

- Both light and heavy Zylon absorbed significantly more energy per unit areal weight than Kevlar
 - 500 denier Zylon absorbed approximately 70% more energy than the Kevlar
 - 1500 denier Zylon absorbed approximately 2.9 times as much energy as the Kevlar
- Small increase in maximum deflection from light to heavy Zylon
- Normalized energy absorbed did not increase significantly with number of layers

Conclusions

- Data available for validation of numerical models:
 - Projectile position vs. time
 - Projectile orientation
 - Fabric deflection
 - Impact velocity, exit velocity, energy absorbed

Honeywell and SRI Generic Engine and Full-Scale Engine Modeling and Testing

NASA Test LG408 Verification

time=0.17 ms

 $0.35 \, \text{ms}$

 $0.53 \, \text{ms}$

- 8 ply Zylon
- Velocity
 - Expt: 904 -> 792 f/s
 - Model: 900 -> 778 f/s

NASA Zylon Test Verification

Engine Verification

Work Conducted

AS900 Fan Blade Out (FBO) test conducted in
 1999 to establish actual result

Metrics

- Qualitative comparison of LS-DYNA's ability to predict various failure modes to actual AS900 FBO test:
 - Opening angle of the containment housing, resting position of the blade
 - Deformed shape of the released blade
 - Integrity of the overall structure

New Material Model (Kevlar)

Kevlar vs Zylon Containment Predictions

- Same model used, except fabric material properties
- Same number of fabric layers used
- Corresponding fabric thickenesses used for Kevlar and Zylon
- Similar containment capability predicted with Zylon substitution
- Consistent with ballistic test results, slightly higher properties of Zylon prevented local penetration.
 Some tearing of fabric predicted due to resulting higher loads
- Lower containment weight of ~5 lb with Zylon, due to density difference

Conclusions

- Fan blade-out event was successfully simulated
- Engine fan blade-out and containment tests results were simulated relatively well using new Kevlar model and single layer shell elements
- The prediction capability was significantly improved with new material model with respect due previously used methodology
- Comparison of Kevlar and Zylon for the same containment system revealed results consistent with ballistic test trend; weight reduction is possible if Kevlar is replaced by Zylon

Why Phase 2?

Material Model

- Tests to find all orthotropic material values
- Consider heavier Zylon as an option

Failure Model

- Sharper projectiles
- Varying roll, pitch and yaw with projectile contact with fabric

Why Phase 2?

- Computational Model
 - Multiple layers with friction
- Verification (QA)
 - More realistic engine FBO condition

